ON THE THEORY OF NONSTATIONARY
POWDER COMBUSTION
STABILITY OF PROCESSES IN A HALF-CLOSED SPACE

Yu. A. Gostintsev, L. A. Sukhanov, UDC 536.46
and P. F. Pokhil

On the basis of a phenomenological theory of nonstationary combustion, equationsare obtained
which describe the processes in powder combustion ina half-closed space. A solutionfor these
equations is found for small changes in the critical nozzle section. The stability of processes
within the chamber is investigated.

1. Let us obtain the differential equations governing the change in gas pressure and temperature in
powder combustion in a half-closed space.

Under the assumption of the existence of a thin, chemically equilibrium flame over the burning sur-
face, we obtain from the gasdynamics equations for a perfect, ideal, non-heat conducting gas in a chamber
by neglecting the velocity and kinetic energy as compared with the speed of sound and the enthalpy [1, 2]
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where E=cyT and H=cpT are the internal energy and enthalpy, respectively.

After averaging (1.1) over the volume W we will have equations for the gas pressure and temperature
in the chamber
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Here S is the area of the burning powder surface, y{y) is a known function of =cp/cv in the exhaust
coefficient, ¢ is the area of the critical nozzle section. [An additional assumption on the smallness of the
pressure gradients and the enthalpy in the chamber was made in deriving (1.2).] A result of averaging the
temperature field over the volume is the presence of a temperature discontinuity on the flame front under
nonstationary conditions (in the stationary mode Ty = Tg).

Such a discontinuity does not exist in the solution of the initial system (1.1), the temperature will be
a function of not only the time but algo the coordinates. Physically this corresponds to the appearance of
heat waves (and chemical enthalpy waves also upon variability of the chemical composition of the products)
in the combustion products in the nonstationary process [1]. However, in the case of complex gas motion in
the space, the dissipation of temperature and chemical enthalpy perturbations occurs sufficiently rapidly,
in which connection their averaging over the volume can be considered justified.
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To close the gystem (1.2) it is necessary to consider the equations describing the nonstationary com-
bustion of a condensed substance at the same time [2-4].

Then introducing the dimensionless parameters
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{the degree superscript on the functions denotes their stationary values), the complete system of equations
governing the internal ballistics of an engine for any nonstationary process can be written as
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The initial conditions for (1.4)-(1.8) for the examination of transients are their stationary solufions
(¢ 0) =0, +eexpi
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(1.9)

The system (1.3)-(1.9) is closed and permits determination of all the averaged internal ballistic char-
acteristics of a combustion chamber by means of a given law of variation of the area of the critical nozzle
section Z(r). (It is considered that the velocity of gas motion over the burning powder surface is small and
its influence on the combustion velocity, surface temperature, and flame temperature is negligible.)

The main parameter governing the contribution of the effect of nonstationarity in the transient mode
is the parameter x(x=ty/tg is the ratio between the characteristic times of the chamber and the heated pow-
der layer). It is seen that if x>1.0, then the stationary combustion formulas can be used to compute the
transients. However, taking account of incomplete combustion (the dependence of Ty° on p and Ty) is needed,
as before, even in this case.

It must be stressed that the formulation of the problem considered here within the limits of a general-
ized phenomenological theory permits, in contrast to the traditional approach to the solution of the problem
of nonstationary powder combustion in a half-closed space [3, 4], taking account of two nonisentropic flame
effects in principle:

1) The nonadiabatic property of a nonstationary flame front, associated with the time-varying heat
flux from the flame to the k-phase (the condensed phase);

2) The incompleteness of the chemical reactions inherent in the combustion of condensed substances
in the stationary mode at low pressures, and in the nonstationary mode for high temperature gradients ¢
on the surface.

2. It is interesting to investigate the reaction of an engine to small changes in the critical nozzle sec-
tion = (r)=1+AX (7). Linearizing the equations, we have in a first approximation in A
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Here the superscript 1 on the functions corresponds to the amplitude of their linear perturbation, and
aj, bj (=1, 2, 3) are coefficients in the expansion of functions in dy, 44, and v in Taylor series in pertur-
bations of the gradient (p( } and the pressure 7®). The values of these coefficients within the limits of the
combustion model under consideration carn be obtained by using the Michelson stationary dependences
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3. Using the Laplace transformation in time

O* (@) = [ D,(m)ewdr, Rew>>0
0

we reduce the heat conduction equation (2.1) to
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The solution of (3.1) has the form
8% (&) = (Bs* + ¢ 2o)ext — o 2 gt (3.2)
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We find for the image of the gradient from (3.2) ‘
P*) =2+ @—1) T 64

Using (3.4) and executing a Laplace transformation on (2.2)-(2.7), we finally obtain for the images of
the functions
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whose solution is representable as

Det,
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Here Det is the total determinant of the system and Det; is obtained from this latter by replacing the
column with the coefficient of ®j* by the column of coefficients from the right hand side in (3.5).

After several manipulations taking account of (2.8) and (2.9), we can write for Det and Det,,, (wehence-
forth limit ourselves to calculating only the combustion velocity since the remaining variables are deter-
mined analogously)
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On the basis of 3.6), (3.7), let us examine a specific example of the change in the internal ballistic
parameters of the chamber for a small sinusoidal change in the critical section of a nozzle with frequency Q

Q

29 (1) = sin QU5 3 (0) = G

Keeping in mind the use of the Efros theorem for evaluation of the originals of the functions, let us
introduce the new complex variable

2= (0 +Yy)"
Then the expression for the image of the combustion velocity will be
U* (Z) — Qe M, (z) (3.8)

E4r—1 Mi(@){(z®—9* + @)
where M (z) and M,(z) are polynomials of sixth and third degree in z, respectively, obtained from (3.6) and
(8.7). Letting z;=x;+ jy; later denote the six pairwise complex-conjugate roots of the polynomial, and
2=+ Q" 2= (Y — Q)"
3y =— Y4+ J'Q)'/z’ By =—(Ys— fQ)l/'
the roots of the equation (z2—Y,)%+Q2%=0, we can write for the function vx(z)
F(5) M3 Qe
= E+r—1
z i (=1 +r

=1

v*(z) =

Now, applying the Efros theorem and the second decomposition theorem, we obtain for the original of
the combustion velocity
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(®(x) is the error integral). Using the properties of pairwise complex-conjugate roots, let us write
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Furthermore, using the notation
ResF (z) [1+ @ (2 V)] =Res {F () [1 + ©(z; V7)I} =Res W (5, V7, 2,)
and performing the necessary manipulations, we reduce (3.9) to
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i=1,2,38
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It follows from the solution (3.10) that the fluctuations in the powder combustion velocity for a peri-
odic change in the area of the critical nozzle section are a set of two kinds of fluctuations in a first approxi-
mation: with the frequency of the stimulating force Q and with the natural frequencies f; of the condensed
phase—flame—chamber system. Let us note that if there are n real roots among those for the polynomial
My (z), then (3.9) can be written as

n 3
v® (t) = 2B sin (LT - W) + exp <—- %) 2 " ResW (2, VT, 2) + 2 2 A sin (f;T 4- ) 3.11)
i=1 % i==h+1
where the first sum extends over all the real, and the second over all the complex roots. The property of
the complex-conjugate roots of the equation My (z) = 0 was taken into account in writing (3.11).

~ The method presented above for calculating the original of the powder combustion velocity is suitable
also for obtaining any internal ballistic function of the engine (&F(i), &g(i), 1r(1), ete.). The natural frequen-
cies fj and the damping decrements )j of the system will hence be independent of the shape of a small nozzle

perturbation since these quantities are governed only by the values of the roots of the characteristic equa-
tion.

4. The solution obtained in the preceding section for the system response to forced vibrations of the
critical nozzle section permits a passage in the limit to an investigation of the stability within the chamber

during powder combustion. Indeed, it is seen from (3.9) and (3.10) that the perturbation amplitude remains
bounded in time if the condition Re z;2=<0 or
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Re w; <0 (i=1,23 4.1)
is satisfied, where ¢y are the roots of the characteristic equation written in the form (3.6).

Let us investigate analytically the limit cases of the behavior of the roots (3.6) as a function of the
relationship between the relaxation times (tg, ty) of the powder k-phase and the combustion chamber vol-
ume. Since the parameter x =t;/tg enters into the characteristic equation only as the product xt, then the
formal passage to the limit in x(x>1.0 or x<« 1.0) is impossible without a simultaneous examination of the
constraints on the magnitude of the system natural frequencies.

Let us consider the case x¥>>1.0. Two possibilities hence exist:

a) yw>1.0, w~ 1.0, which corresponds to combustion chambers with high relaxation time of the gas
exhaust process;

b) xw~1.0, w«<1.0, which corresponds to quasistationary powder combustion (let us recall that the
dimensionless frequency ¢ is related to its dimensional value ¢° by means of = w’tg).

Performing the passage to the limit in (3.6) for a}, we reduce the characteristic equation to

4.2)

{1—a
®
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whose solution is

ona = [0 B TR

k
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r
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An investigation shows that Re y =0 and the combustion process is stable if
k< 1.0  for any r @.4)
r>E—1M (k41 a k>10
The dimensionless vibrations frequency is hence ¢ =jvEk/r on the stability boundary.

The instability case noted can be observed in powder combustion with constant pressure and was first
analyzed in [5]. Assuming r=0 in (4.2), we obtain the stability criterion k=1.0 for powder combustion with
constant surface temperature investigated by Ya. B. Zel'dovich [6].

Turning to an analysis of the pogsibility b), and performing the appropriate passage to the limitin (3.6),
we have after transformation

wor +(ZEL s — o+ (1— 2 —v) =0 (4.5)

The solution of @.5) is yielded by the expression
L (3141 ST 1 T 4. 1 W 4.6
mm:—z&—l——( o —s—v)il/( o ——s——v) —?(1——2—s~—v)} (.6)

The stability condition Re w3 =0 of this mode will be determined, according to &.6), by the inequal-
ities
3r4-4
2y

T4+1
=

v < —8 at s>

4.7)

v<1——% at ng'}r—i

Vibrational combustion modes are possible in the domain of values of the parameters s, y, satisfying

(.3721'1 —s—v)2~~§f—(1-—-%—s—v)<0

This holds when v, <¥ <vy, where

Vi = __(S_ 372;-1)i1/_3_(s_ ET) (4.8)

The results of a complete investigation of (4.5) are presented graphically in Fig. 1. It is seen that the
engine operating mode under consideration can be vibrational in nature (domains 3 and 4), and particularly
vibrationally unstable (domain 4) depending on the values of the exponent in the powder combustionlawu =up¥
and on the incompleteness of chemical energy extraction in the flame (s=9ln Tg/91lnp). The domain 2 cor-
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responds to stability and the domain 1 to exponential instability. It is hence interesting to note that for >0
and s>[y -1/ 24(3y—1)/2y] the process is absolutely unstable.

It must be noted that O. I. Leipunskii expressed qualitative reasoning about the influence of the degree
of incompleteness of the chemical reactions on the stability of processes in a half-closed volume in 1945.%

- The energy equation for the gas in the chamber was not examined in the formulation of the problem
of nonstationary processes in [5, 6]. This is equivalent to the assumption of constant flame temperature
(y=1.0, s=q=0) and results automatically in the impossibility of exposing the kind of instability elucidated
above, In fact, under such assumptions the stability condition takes the form »=<1.0 [3] from (4.7) and (4.8),
and vibrational modes do not generally exist. :

Now, let us turn to the limit case of small values of the parameter, For this we put (yx<<1.0 and ¢~
1.0 in the characteristic equation (3.6), which corresponds to chambers with low relaxation t1me After ma-
nipulation, we will have

m2+w[2%_§—%1+%[%+%+1]=0 “.9)

where
C=dag +a;b3/2, D= (dr—8/{k +r—1) +ay, E=0;+-4d

and the remaining parameters have been defined earlier.

In general, the stability condition resulting from (4.9) is quite awkward in form and is not presented
here,

However, in the particular case of a nonstationary combustion model with constant flame temperature,
the results are completely visible since C=ag, D= (r—0)/(k+r—1) for s=q=0 and y =1.0, and the solution
4.9) becomes

mmz_;_{_[i—r\—i;v __(1—lc—v +l/l_1_r"_-’f-;v — Vijié—v)sz_4 lzr(i—_a;z)}

We hence obtain the stability condition

v<10, r>8 4+ —k—v)2/ {1 +E—W 4.10)
The dimensionless vibrations frequency on the stability boundary is
VEL—=™ @.11)
=] r—3a

Following from (4.10) the stability criterion in the case s=q=p=r=0 and y =1 will be
<1-—%

Besides the analytical investigation of the limit cases of stability presented above, instability domains
s(x) were constructed for different k and g on the basis of a numerical analysis and application of the Des-
cartes rule of signs for the roots of (3.6). Curves 1, 2, 3 in Fig. 2 correspond to the values k=0.5, q=0.1;
k=0.5, q=0.5;k=1.0, g =0.1 for identical values of the parameters v=0.66, 1 =0.1, r=0.3. It is seen
that in the (s, x) plane the domain of instability over the curves is broadened as k and g grow.

*0, I. Leipunskii, "On the question of the physical principles of the internal ballistics of reactive projectiles,"
Doctoral Dissertation, Institute of Chemical Physics, Moscow (1945).
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